Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope.

نویسندگان

  • Vera Kollarova
  • Jana Collakova
  • Zbynek Dostal
  • Pavel Vesely
  • Radim Chmelik
چکیده

A coherence-controlled holographic microscope (CCHM) enables quantitative phase imaging with coherent as well as incoherent illumination. The low spatially coherent light induces a coherence gating effect, which makes observation of samples possible also through scattering media. The paper describes theoretically and simulates numerically imaging of a two-dimensional object through a static scattering layer by means of CCHM, with the main focus on the quantitative phase imaging quality. The authors have investigated both strongly and weakly scattering media characterized by different amounts of ballistic and diffuse light. It is demonstrated that the phase information can be revealed also for the case of the static, strongly scattering layer. The dependence of the quality of imaging process on the spatial light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with a model phase object, as well as living carcinoma cells treated in an optically turbid emulsion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-coherence off-axis holographic phase microscopy of live cell dynamics

We demonstrate a single-shot holographic phase microscope that combines short-coherence laser pulses with an off-axis geometry. By introducing a controlled pulse front tilt, ultrashort pulses are made to interfere over a large field-of-view without loss of fringe contrast. With this microscope, quantitative phase images of live cells can be recorded in a full-field geometry without moving parts...

متن کامل

Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope.

Coherence-controlled holographic microscope (CCHM) combines off-axis holography and an achromatic grating interferometer allowing for the use of light sources of arbitrary degree of temporal and spatial coherence. This results in coherence gating and strong suppression of coherent noise and parasitic interferences enabling CCHM to reach high phase measurement accuracy and imaging quality. The a...

متن کامل

Automated alignment method for coherence-controlled holographic microscope

A coherence-controlled holographic microscope (CCHM) was developed particularly for quantitative phase imaging and measurement of live cell dynamics, which is the proper subject of digital holographic microscopy (DHM). CCHM in low-coherence mode extends DHM in the study of living cells. However, this advantage is compensated by sensitivity of the system to easily become misaligned, which is a s...

متن کامل

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

The use of a volume holographic filter as collector element in a confocal system imaging through scattering (turbid) material is described. We show that the penetration depth of the volume holographic system is de-coupled from the scatter noise discrimination properties, and is potentially more advantageous than the traditional confocal microscope. Since the volume-holographic filter is a match...

متن کامل

Low-Coherence, Common-Path, and Dynamic Holographic Microscopy and Nanoscopy Using Portable Systems

We present compact, portable and inexpensive interferometric systems for obtaining highly stable, easy-to-align holograms under low-coherence illumination, and use them for quantitative, label-free imaging of live cells and transparent elements with nano-scale thickness. OCIS codes: (090.1995) Digital holography; (090.2880) Holographic interferometry; (180.3170) Interference microscopy. Digital...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2015